Review Rioblems

1) Say everything you can about the following matrix.
$\left[\begin{array}{ccccc}5 & 10 & 0 & 0 & 0 \\ 1 & 2 & 7 & 7 & 7 \\ 0 & 1 & 7 & 7 & 7 \\ 0 & 0 & 3 & 3 & 3\end{array}\right]$

In particular, address the following incomplete list of interesting things we might like to say:

- What is its echelon form?
- What is its rank?
- What is the column space?
- Its dimension?
- A basis for it ?
- What is the row space?
- Its dimension?
- A basis for it ?
- What is the null space?
- Its dimension?
- A basis for it ?
- What is the associated linear operator T ?
- What is the range of T ?
- Its dimension?
- A basis for it ?
- What is the domain of T ?
- Its dimension?
- A basis for it ?
- What is the codomain of T ?
- Its dimension?
- A basis for it ?
- What is the kernel of T ?
- Its dimension?
- A basis for it ?

2) Find 17 different bases for \mathbb{R}^{3}.
3) Find a linear operator $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{7}$ with nontrivial kernel.
4) Given the matrix $[T]=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, find the T^{-1}, the inverse of the associated linear operator.
5) Find a linear operator T in which the inverse operator T^{-1} has trivial kernel.
6) Give an example of a dimension 2 space that is not \mathbb{R}^{2}.
7) Give an example of a dimension 34 space that is not \mathbb{R}^{34}.
8) A company produces x_{1} phones and $x_{2} \mathrm{mp3}$ players. They have encoded their production information in to the following matrix equation using slack variables s_{1} and s_{2}. Give one linear equation or inequality encoded here and describe what it means for this company.

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
20 & 50 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{c}
20,000 \\
30,000 \\
100,000
\end{array}\right]
$$

9) The set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is linearly dependent. Show that $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}, \vec{u}\right\}$ is also linearly dependent.
